Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning
نویسندگان
چکیده
Lesion detection is a fundamental problem in the computer-aided diagnosis scheme for mammography. The advance of deep learning techniques have made remarkable progress this task, provided that training data are large and sufficiently diverse terms image style quality. In particular, diversity may be majorly attributed to vendor factor. However, collection mammograms from vendors as many possible very expensive sometimes impractical laboratory-scale studies. Accordingly, further augment generalization capability model various with limited resources, new contrastive developed. Specifically, backbone network firstly trained multi-style multi-view unsupervised self-learning embedding invariant features vendor-styles. Afterward, then recalibrated downstream task lesion specific supervised learning. proposed method evaluated four one unseen public dataset. experimental results suggest our approach can effectively improve performance on both seen domains, outperforms state-of-the-art (SOTA) methods.
منابع مشابه
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولMulti-View Learning for Web Spam Detection
Spam pages are designed to maliciously appear among the top search results by excessive usage of popular terms. Therefore, spam pages should be removed using an effective and efficient spam detection system. Previous methods for web spam classification used several features from various information sources (page contents, web graph, access logs, etc.) to detect web spam. In this paper, we follo...
متن کاملStatistical Learning of Multi-view Face Detection
A new boosting algorithm, called FloatBoost, is proposed to overcome the monotonicity problem of the sequential AdaBoost learning. AdaBoost [1, 2] is a sequential forward search procedure using the greedy selection strategy. The premise oÿered by the sequential procedure can be broken-down when the monotonicity assumption, i.e. that when adding a new feature to the current set, the value of the...
متن کاملMulti-domain learning and generalization in dialog state tracking
Statistical approaches to dialog state tracking synthesize information across multiple turns in the dialog, overcoming some speech recognition errors. When training a dialog state tracker, there is typically only a small corpus of well-matched dialog data available. However, often there is a large corpus of mis-matched but related data – perhaps pertaining to different semantic concepts, or fro...
متن کاملMulti-Way, Multi-View Learning
We extend multi-way, multivariate ANOVA-type analysis to cases where one covariate is the view, with features of each view coming from different, highdimensional domains. The different views are assumed to be connected by having paired samples; this is common in our main application, biological experiments integrating data from different sources. Such experiments typically also include a contro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2021
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-030-87234-2_10